Fractional Q-edge-coloring of Graphs
نویسندگان
چکیده
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let Q be an additive hereditary property of graphs. A Q-edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property Q. In this paper we present some results on fractional Q-edge-colorings. We determine the fractional Q-edge chromatic number for matroidal properties of graphs.
منابع مشابه
On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملGeneralized fractional total coloring of complete graphs
An additive and hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let P and Q be two additive and hereditary graph properties and let r, s be integers such that r ≥ s. Then an r s -fractional (P,Q)-total coloring of a finite graphG = (V,E) is a mapping f , which assigns an s-element subset of the set {1, 2, . . . , r} to each vert...
متن کاملCircular Chromatic Numbers of Distance Graphs with Distance Sets Missing Multiples
Given a set D of positive integers, the distance graph G(Z , D) has all integers as vertices, and two vertices are adjacent if and only if their difference is in D; that is, the vertex set is Z and the edge set is {uv : |u − v| ∈ D}. We call D the distance set. This paper studies chromatic and circular chromatic numbers of some distance graphs with certain distance sets. The circular chromatic ...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملGeneralized fractional total colorings of graphs
Let P and Q be additive and hereditary graph properties and let r, s be integers such that r ≥ s. Then an r s -fractional (P,Q)-total coloring of a finite graph G = (V,E) is a mapping f , which assigns an s-element subset of the set {1, 2, . . . , r} to each vertex and each edge, moreover, for any color i all vertices of color i induce a subgraph with property P, all edges of color i induce a s...
متن کامل